
COMPARISON OF XML SERIALIZATIONS: COST BENEFITS VERSUS 
COMPLEXITY 

 
Robbie De Sutter† · Sam Lerouge† · Peter De Neve† · Christian Timmerer‡ · Hermann 

Hellwagner‡ · Rik Van de Walle†

 
† Dept. of Electronics and Information Systems, Multimedia Lab, Ghent University — IBBT 

{robbie.desutter, sam.lerouge, peter.deneve, rik.vandewalle}@ugent.be 
 

‡ Dept. of Information Technology (ITEC), Klagenfurt University 
{christian.timmerer, hermann.hellwagner}@itec.uni-klu.ac.at 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Department of Information Technology (ITEC) 
Klagenfurt University 
Technical Report No. TR/ITEC/06/1.05 
July 2006 
 

 



Multimedia Systems
DOI 10.1007/s00530-006-0044-y

REGULAR PAPER

Comparison of XML serializations: cost benefits versus complexity

Robbie De Sutter · Sam Lerouge · Peter De Neve ·
Christian Timmerer · Hermann Hellwagner ·
Rik Van de Walle

© Springer-Verlag 2006

Abstract More and more data are structured, stored,
and sent over a network using the Extensible Markup
Language (XML) language. There are, however, con-
cerns about the verbosity of XML in such a way that it
may restrain further adoption of the language, especially
when exchanging XML-based data over heterogeneous
networks, and when it is used within constrained
(mobile) devices. Therefore, alternative (binary) serial-
ization formats of the XML data become relevant in or-
der to reduce this overhead. However, using
binary-encoded XML should not introduce interoper-
ability issues with existing applications nor add addi-
tional complexity to new applications. On top of that,
it should have a clear cost reduction over the current

R. De Sutter (B) · S. Lerouge · P. De Neve · R. Van de Walle
Department of Electronics and Information
Systems — Multimedia Lab,
Ghent University — IBBT,
Sint-Pietersnieuwstraat 41,
9000 Ghent, Belgium
e-mail: robbie.desutter@ugent.be

S. Lerouge
e-mail: sam.lerouge@ugent.be

P. De Neve
e-mail: peter.deneve@ugent.be

R. Van de Walle
e-mail: rik.vandewalle@ugent.be

C. Timmerer · H. Hellwagner
Department of Information Technology (ITEC),
Klagenfurt University,
Universitätsstraße 65–67,
9020 Klagenfurt, Austria
e-mail: christian.timmerer@itec.uni-klu.ac.at

H. Hellwagner
e-mail: hermann.hellwagner@itec.uni-klu.ac.at

plain-text serialization format. A first technology is
developed within the ISO/IEC Moving Picture Experts
Group, namely the Binary MPEG Format for XML.
It provides good compression efficiency, ability to (par-
tially) update existing XML trees, and facilitates random
access into, and manipulation of, the binary-encoded bit
stream. Another technique is based on the Abstract Syn-
tax Notation One specification with the Packed Encod-
ing Rules created by the ITU-T. This paper evaluates
both techniques as alternative XML serialization for-
mats and introduces a solution for the interoperability
concerns. This solution and the alternative serialization
formats are validated against two real-life use cases in
terms of processing speed and cost reduction. The effi-
ciency of the alternative serialization formats are com-
pared to a classic plain text compression technique, in
particular ZIP compression.

Keywords XML serialization formats · MPEG-B ·
ASN.1 · Information encoding · Data interchange
formats · Multimedia applications

1 Introduction

The Extensible Markup Language (XML) is gaining
momentum. More and more XML-based data are struc-
tured, stored, and sent over networks. Due to this, the
disadvantages of the language should no longer be
ignored because they may restrict the adoption of XML
in future applications. XML represents its data in
plain-text encoding (e.g., UTF-8), thus guaranteeing
platform-independent processing thereof, as long as the
platform can handle the used content encoding



R. De Sutter et al.

format. However, this kind of serialization introduces
a lot of overhead, also known as the verbosity of XML.
The overhead is a potential disadvantage, especially
when using XML in constrained environments, such as
mobile devices, where memory, processing power, and
network bandwidth are restricted. One could argue that
these devices are becoming more and more powerful
and such limitations will become obsolete. In practice,
however, these network-enabled devices are becoming
smaller and smaller and usage of XML-based data is
increasing, therefore similar constraints will apply to fu-
ture devices as much as they apply to the devices we are
using today. Furthermore, if we want to exploit the full
potential of any device when handling XML, we should
address the overhead.

The verboseness issue can be solved by an alterna-
tive serialization of the XML data, i.e., through binary
encoding. The ISO/IEC JTC 1/SC 29/WG 11 group—
better known as the Moving Picture Experts Group
(MPEG)—standardized such a binary serialization as
part of the MPEG-7 Systems standard, namely Binary
format for Metadata (BiM) in 2001 [8,19]. Initially, BiM
was intended as an alternative and compact serializa-
tion of XML-based MPEG-7 descriptions. According
to [19] the BiM approach can also be applied to XML
files in general as long as there is an available Descrip-
tion Definition Language (DDL) [9] Schema or an XML
Schema. The DDL adopted the XML Schema specifica-
tion with some multimedia-related extensions. Hence,
XML Schema is a subset of DDL. Recently, the BiM
technology has been relocated to a new MPEG standard
formally known as MPEG-B Part 1 — Binary MPEG
format for XML [11].

Besides the binary XML efforts within the MPEG
group, ISO/IEC has put some joint efforts with ITU-
T towards an alternative XML serialization with the
Abstract Syntax Notation One (ASN.1) technology [13].
Originally, it was intended to describe the structure and
type of any kind of structured data for representing,
encoding, and decoding of this data in a generic fash-
ion. Mapping rules between XML Schemas and ASN.1
Schemas are defined [12,15], and, for ASN.1 instances,
efficient binary encoding schemes such as Packed Encod-
ing Rules (PER) are available [14]. Recently, tools
became available to convert XML Schemas to ASN.1
Schemas. These ASN.1 Schemas can be used to auto-
matically generate source code that can be compiled
into an application that can apply a binary encoding
scheme, like PER.

It is true that the verboseness issue of XML could
be addressed by simply applying well-known plain-text
compression algorithms such as the Lempel/Ziv

algorithm [28,27] as used in WinZIP or GnuZIP.
However, in particular BiM provides additional ben-
efits besides achieving compression ratios comparable
to those plain-text compression schemes [23]. The most
important benefits are the fact that parsing and manipu-
lating the binary-encoded XML data can occur directly
in the binary domain, streaming of the data is supported,
and optimized techniques to update and modify XML
trees are standardized. Note that XML documents do
not natively support streaming, i.e., a transmitted XML
document is only well-formed if the closing tag of the
root element is also received.

For alternative XML serialization formats to be well
adopted, regardless of the exact type of serialization,
it should (1) avoid interoperability issues with existing
applications, (2) not add any additional degree of com-
plexity for the application developers, and (3) offer a
demonstrable cost reduction. As for (1), interoperabil-
ity is ensured by using open standards—MPEG-B Part
1 is an ISO standard [11] and ASN.1 is an ITU.T speci-
fication [13]. To avoid the complexity concerns as men-
tioned in (2), it is important to realize that application
developers handle (plain-text) XML data using an XML
parser. As such, it is desirable that developers continue
to use their preferred type of parser if they want to han-
dle binary-encoded XML data. Moreover, they need not
be aware of the fact they are handling binary-encoded or
plain-text XML. It is the parser’s responsibility to han-
dle the XML data correctly. The parser is an intermedi-
ate layer between the application and the XML source
data. As for (3), the cost reduction is achieved by the fact
that fewer bytes need to be transferred over networks
(reduced bandwidth). Most network operators charge
their users (in the broadest sense of the word, thus end
users, content providers, and so on) per time unit or per
byte transferred. By reducing the byte volume, a mea-
surable saving can be accomplished. Also the network
operators benefit from the reduced byte volume as they
are capable of handling more users without additional
expensive infrastructure.

The remainder of this paper is organized as follows.
Section 2 covers the various existing efforts being made
to address the verboseness issue of XML. In Sect. 3, we
elaborate on the technical details of MPEG-B and of
ASN.1. In Sect. 4, we introduce a novel kind of XML
parser, namely a parser that is serialization-type agnos-
tic. Section 5 discusses two real-life use cases to evaluate
the usefulness and the economical advantages of alter-
native binary-encoded XML data. The materials and
methods for the evaluation are discussed in Sect. 6 and
the results are discussed in Sect. 7. Finally, Sect. 8 con-
cludes this paper.



Comparison of XML serializations: cost benefits versus complexity

2 Related work

Apart from MPEG, other standardization bodies are
investigating the need and usefulness of an alternative
XML serialization. In this section, we briefly give an
overview of these efforts.

The driving force behind XML, the World Wide Web
Consortium (W3C), founded a task force in 2004 to
investigate the usefulness and desirability of an alterna-
tive serialization format. This resulted in a first working
draft of relevant use cases and applications that could
benefit from a (binary) serialization. This document is
regularly updated and can be found on the Website of
the W3C [3]. The report is used to determine if it is pos-
sible to select one specific kind of serialization for all
use cases. Amongst others, MPEG-B is listed as a candi-
date solution. Furthermore, this task force has recently
released a new working draft describing measurement
aspects, methods, caveats, test data, and test scenarios
for evaluating the potential benefits of an alternative
serialization for XML [26]. Other related W3C activ-
ities include the efficient transportation of non-XML-
based data within XML-based data only, e.g., SOAP
messages with attachments [1], XML-binary Optimized
Packing [7], and Resource Representation SOAP Header
Block [17].

Also, the Web service community has recognized the
verboseness issue and is currently developing alterna-
tive XML serialization schemes known as Fast Infoset
[22] and Fast Web Services [21]. The latter is built upon
ASN.1 as described in the previous section. The for-
mer uses an indexing mechanism which associates an
index to each XML element enabling its usage for fur-
ther occurrences of the same XML element, i.e., highly
repetitive content will benefit from this approach. How-
ever, for small and complex XML documents the index
table is again a burden. Performance results comparing
these two approaches with other binary XML encod-
ing schemes are not available at the time of
writing.

Finally, we want to mention two proprietary solu-
tions, namely XMill [18] and XMLPPM [2]. The former
exploits the self-describing nature of XML for compres-
sion by leveraging existing compression algorithms and
tools like ZLIB (the library function version of GZIP)
and some simple data type specific compressors. The
latter is a compression tool for XML documents that
combines the well-known Prediction by Partial Match
(PPM) and the Multiplexed Hierarchical Modeling algo-
rithms. Currently these alternative XML serialization
solutions are not yet stable for real-life applications, but
progress is being made. In [23] a comparison of MPEG-B
BiM to XMill and XMLPPM is made in terms of

compression efficiency. The results demonstrate that
BiM is superior to these solutions.

3 Technical overview

3.1 Binary MPEG format for XML

The Binary MPEG format for XML (BiM) was initially
designed to binary encode only MPEG-7 descriptions,
which are XML based. However, BiM can also cope
with other kinds of XML-based data as long as they are
based on a DDL or an XML Schema and the respective
DDL or XML Schema definition is available.

BiM is an XML Schema aware encoding scheme for
XML documents [19], i.e., it uses information from the
XML Schema to create an efficient alternative serial-
ization of XML documents within the binary domain.
This knowledge enables the removal of structural redun-
dancy (e.g., white space, element and attribute names),
thus achieving high compression ratios with respect to
the document structure. Furthermore, element and attri-
bute names as well as data are encoded using ded-
icated coders based on the data type (integer, float,
string) which further increases the compression ratio.
The resulting compression ratio is comparable to those
achieved by traditional plain-text compression
algorithms [19]. The advantages of BiM over traditional
plain-text compression algorithms are the support of
parsing the XML data in the binary domain (thus with-
out mapping to plain-text XML), its streaming capabili-
ties, and dynamic and partial updating of existing XML
trees.

To achieve the latter, BiM can divide an XML tree
into different parts. One part is encoded into an access
unit and contains an optional schema update unit and
one or more fragment update units. As a decoder needs
to know the set of utilized XML Schemas in order to
decode the XML data, the schema update unit makes it
possible to modify the initially retrieved set of schemas.
More interesting are the fragment update units, which in
turn consist of three parts: a fragment update command,
a fragment update context, and a fragment update pay-
load. The fragment update command specifies the de-
coder action for the corresponding fragment which can
be either add, delete, replace, or reset, i.e., BiM provides
partial updates of an XML document. The fragment up-
date context is used to uniquely determine the location
of the fragment to be updated in the XML document
by, for example, an XPath expression. Finally, the frag-
ment update payload contains the actual encoded XML
data of the update. Figure. 1 illustrates how an XML
document is divided into access units and streamed over



R. De Sutter et al.

Fig. 1 Streaming XML
documents over the network
using access units (AU) AU updates the 

description tree
Network

Access Units
(at the sender)

Access Units
(at the receiver)

Access Unit
(as network packet)

Fig. 2 Handling XML
documents by an ASN.1
application XML Schema ASN.1 Schema

XML file ASN.1 data message

Validates Describes

Converted to

Converted to

Compiled
into

ASN.1 source 
code 

(containing 
encoding rules)

Original application 
source code

ASN.1 encoder

ASN.1 decoder

Application

+

the network. In particular, it shows how a sub-tree of
the whole XML document is transmitted over the net-
work and added to the XML tree at the receiver side (cf.
dotted line).

3.2 Abstract Syntax Notation One

The International Telecommunication Union (ITU), and
more specifically the ITU Telecommunication Standardi-
zation Sector (ITU.T), together with the ISO/IEC started
development of the Abstract Syntax Notation One
(ASN.1) standard in 1984 [13]. Originally, it was in-
tended to describe the structure and type of any kind of
organized data for representing, encoding, and decoding
of the data in a generic fashion.

ASN.1 stores information in an ASN.1 data message,
which is structured according to an ASN.1 Schema and
serialized by an ASN.1 encoding rule. The schema takes
care of the abstract notation of the data by dividing
data messages into smaller and simpler basic structures
such as integers, booleans, and strings and by combining
these basic structures into bigger structured types. The

main task of an encoding rule is to remove any redun-
dant structural information from the data message and
to make sure that the receiver of the message uses the
correct character set or decoder. If a program is aware
of the ASN.1 Schema and the selected ASN.1 encoding
rule, it can process (read and write) correctly formed
data messages. In [15] mapping rules between an XML
Schema and an ASN.1 Schema are defined. As such,
ASN.1 Schema can be seen as an alternative to XML
Schema.

Based on the ASN.1 Schema, different tools are avail-
able to automatically generate source code that can be
compiled into other applications. These tools also gen-
erate source code for the different encoding rules so for
each encoding rule two methods are available: an encod-
ing method and a decoding method. The former accepts
a valid XML file and returns the ASN.1 data message;
the latter accepts an ASN.1 data message and returns a
valid XML file. As such, it is trivial to process and gen-
erate ASN.1 data messages compliant for a given ASN.1
Schema from any application. A schematic overview of
the ASN.1 procedure to handle XML data can be found
in Fig. 2.



Comparison of XML serializations: cost benefits versus complexity

Fig. 3 Architectural
overview of the XML Cursor
Model Parser capable of
handling plain-text XML and
binary-encoded XML

navigation &
data handling

retrieve XML document

X
M

L 
C

ur
so

r 
M

od
el

 P
ar

se
r

Binary?

Yes

Binary Domain
15 F5 4E 98 36 AD

...

Textual Domain
<? xml version="1.0" ?>

...

in
te

rn
al

 X
M

L 
tr

ee

bo
os

tr
ap

No

bootstrap parser

4 Serialization-type agnostic XML parser

4.1 XML parser models

In almost all use cases, applications process an XML
data stream indirectly using an XML parser. Applica-
tion developers can choose from a wide range of differ-
ent parsers, where each parser has its own possibilities,
characteristics, and fields of applications. When observ-
ing the currently available parsers, we can categorize
them into five distinct classes [6]:

1. The Tree Model (e.g., W3C DOM parser1). This is
the first parser model. It exploits the tree structure
characteristics of an XML document.

2. The Push Model (e.g., SAX2). The parser generates
an event for each XML token (e.g., a start tag, an
attribute, etc.).

3. The Pull Model (e.g., XMLPull3). The parser is in-
structed by an application when to read the next
XML token.

4. The Cursor Model (e.g., .NET XPathNavigator4).
The model is based on the database views concept,

1 W3C Recommendation, Document Object Level 3 Core Spec-
ification, available at http://www.w3.org/TR/DOM-Level-3-Core/
2 Simple API for XML, available at http://sax.sourceforge.net.
3 Common API for XML, available at http://www.xmlpull.org.
4 Microsoft .NET XPathNavigator, available at http://msdn.
microsoft.com.

i.e., a view on the XML data is created through an
XPath expression.

5. The Mapping Model (e.g., .NET XmlSerializer5).
The parser maps the XML content onto an object-
oriented data structure.

4.2 Serialization-type agnostic XML parser
architecture

Based on the conclusions in [6], we developed an XML
Cursor Model Parser capable of handling both plain-text
as well as binary-encoded XML data (Fig. 3). As such, an
application using the parser is unaware of the serializa-
tion format of the XML data. Hence, application devel-
opers create applications that support BiM-encoded or
ASN.1-PER-encoded XML data transparently.

In practice, an application retrieves an XML docu-
ment from a source and sends it to the bootstrap method
of the parser. The bootstrap method determines the
serialization format of the XML data either trivially,
by looking at the extension of the filename, or more
advanced by using the MIME-type information or by
inspecting the first bytes of the stream. Once the boot-
strap method has identified the serialization type, it can
handle the data appropriately.

The parsing of BiM-encoded data occurs directly by
the serialization-type agnostic parser. Indeed, the

5 Microsoft .NET XmlSerializer, available at http://msdn.micro-
soft.com.



R. De Sutter et al.

internal XML tree is constructed simultaneously with
the processing of the BiM -serialized data. This is accom-
plished by integrating the BiM reference software
(January 2005 version, [10]) with the parser. As a re-
sult, we do not need to decode the data first before the
creation of the internal XML tree can start.

In the case of ASN.1-PER-encoded data, the spe-
cific ASN.1-PER decoding software is first used, which
results in plain-text XML data. After the decoding step,
the parser processes the plain-text XML data.

If the content-encoding format of the XML data is
plain text, it is only necessary to create the internal XML
tree for which existing XML parsers, as described in the
previous section, can be used.

5 Use cases

In the remainder of this paper, we want to evaluate
the usefulness of an alternative XML serialization in
real-life applications. We investigate the complexity con-
cerns, execution time issues, and cost-effectiveness. This
section describes two real-life applications, their current
problems, and how alternative serializations can address
these issues.

5.1 Use case 1: usage environment description
notification

Universal Multimedia Access (UMA) [20,24] refers to
a paradigm where audiovisual data are produced once
and consumed on any kind of end-user device, any-
where and anytime. UMA dynamically adapts a mul-
timedia resource so that the modified resource meets
the requirements of the target application or device.
In order to achieve an optimal content adaptation, the
UMA-enabled adaptation engine requires a description
of the usage environment. However, this usage environ-
ment is not static and changes thereof can occur during
consumption of the audiovisual data, for example the
available bandwidth can change. When a modification
occurs, the adaptation engine has to be informed such
that the adaptation scheme is updated accordingly [5].

Due to its update capability, BiM is an ideal candidate
for dealing with the volatile nature of the usage envi-
ronment. BiM is capable of encoding only the informa-
tion that has changed and that needs to be transmitted
over the network. This eliminates the need to send the
full usage environment information whenever a change
thereof occurs. For the network operator this has an
economical advantage. The required bandwidth reduc-
tion implies that more users can use the same existing
network infrastructure.

Another issue arises when applying the UMA
paradigm to constrained devices, e.g., a PDA or a cellu-
lar phone. These devices are not only limited in mem-
ory capacity and processing capabilities, but they have a
constrained network connection, for example a General
Packet Radio Service (GPRS) connection, which has an
upload transfer speed that is several factors slower than
download speed [16] and for which the end user has to
pay a fee based on the number of bytes transferred.

Again, BiM is an ideal candidate to address this issue.
BiM reduces the number of bytes to be sent in two ways:
by binary encoding the information and by only sending
the updated information. As a result, the BiM approach
reduces the fee the end user pays, hence a cost reduction.

5.2 Use case 2: RSS feeds

Really Simple Syndication or Rich Site Summary (RSS)
is an XML application that enables users to be informed
whenever an update occurs to an Internet news source.
In this paper, we refer to version 2.0 of the RSS specifi-
cation6. This specification defines a container structure:
an RSS document—the RSS feed—contains one or more
channels, e.g., a weather information channel. A Chan-
nel groups multiple Items. One Item is a particular news
piece on the topic of the given Channel, e.g., weather
information for a particular city.

Recently, RSS became a popular tool as a means to
disperse podcasts. Indeed, a podcast publishes multi-
media data (such as audio and video) by using RSS
feeds, such that the feed subscribers automatically re-
ceive new content. This is accomplished by adding the
optional enclosure element to an RSS Item, which con-
tains an URL to the actual location of the audio-visual
data stream. As such, it is comparable to the technique
to add multimedia content to a Web page.

The RSS viewer, i.e., the client application, retrieves
the RSS feed from a server on a regular basis, e.g., by
downloading the RSS document every day. Note that
in this use case the XML data are transmitted from the
server to the client whereas in the first use case it is the
other way round, i.e., the usage environment descrip-
tion is sent from the client towards the server. When
one or more new Items are available, the RSS viewer
will inform the user about these by, for example, show-
ing the titles of the new Items on his or her display.
The RSS publisher updates the RSS feed by adding new
Items or removing obsolete Items at the server. Usually
the Channel information is not modified.

6 The RSS 2.0 Specification is discussed at http://blogs.law.har-
vard.edu/tech/rss.



Comparison of XML serializations: cost benefits versus complexity

Current issues with the RSS application are obvious.
The RSS viewer regularly downloads the RSS data file
anew in order to check for added Items. If the RSS data
file was not changed since the last retrieval, this down-
load is unnecessary and the bandwidth waste is obvious.
But even if new Items were added to the RSS file, band-
width is wasted, as the new Items are usually only a
relatively small part of the complete XML file. Again,
for an end-user, this overhead is expensive, especially
when using an Internet connection which has to be paid
on a per byte basis. For content providers, the overhead
can also become a big concern when their RSS feed is
popular. The overhead when millions of users are sub-
scribed to a certain feed may become significant. Note
that content providers also pay a fee for the used band-
width. In other words, the overhead introduces a cost
for the end-user as well as for the content provider.

6 Materials and methods

For the evaluation of the first use case, we have selected
the MPEG-21 Digital Item Adaptation (DIA) standard
amongst various standards to describe the usage
environment [4,25]. The main part of the DIA standard
comprises the Usage Environment Description (UED)
format which provides means to describe and structure
the usage environment containing information about
the (end) user, the terminal, the network, and the natu-
ral environment.

We created a conceivable usage environment descrip-
tion compliant to MPEG-21 DIA UED. This usage envi-
ronment description is sent to an adaptation engine
located on a server or on a proxy device within the
network. Upon receiving the description, the adapta-
tion engine bootstraps the XML Cursor Model Parser.
Thereafter, three kinds of updates are transmitted from
the device to the server. First a small-sized update is
sent which modifies information about the bandwidth
of the network. Next, a medium-sized update is trans-
mitted changing the terminal’s display information. And
finally, a large update is sent which changes the user and
the natural environment information.

For the second use case, we emulated a typical usage
of RSS. An RSS viewer retrieves the RSS data from a
content provider daily during the period of 1 month. In
practice, we used the MSDN7 RSS feed of the month
November 2004 containing a total of 53 Items scattered
over the weekdays of the month.

7 The Microsoft Developer Network (MSDN) Website can be
found at http://msdn.microsoft.com/.

In order to evaluate the usefulness of MPEG-B to
solve the issues of the two use cases, we compare four
different kinds of XML serialization types:

1. Plain text. The classical way of serializing XML data
is by storing the data as UTF-8 or UTF-16 encoded
plain text. In these tests, we use UTF-8 encoding.

2. BiM encoding. The MPEG-B Binary MPEG format
for XML, as described in Sect. 3.1, is applied to the
XML data. Handling (parsing) the BiM-encoded
XML data occurs in the binary domain, thus without
decoding the BiM data to plain text.

3. ZIP compression. For this serialization type, we ap-
ply ZIP compression to the plain-text XML data
files. Before parsing the ZIP-compressed XML data,
the compressed data are decompressed to plain text.
This serialization type requires that the ZIP-com-
pressed data are completely available at the receiver
before decompressing and parsing can start. For the
tests, we make use of the internal ZIP handling
package of Java 1.5 which is based on the ZLIB
specification8 and PKWARE’s Application Note on
the .ZIP file format.9

4. ASN.1-PER. This serialization type applies the
Packed Encoding Rules for the Abstract Syntax
Notation One to the plain-text XML data, as de-
scribed in Sect. 3.2. In order to apply this serializa-
tion type, an RSS and a DIA-UED PER-encoder/
decoder were created. To do this, first the ASN.1
Schemas were automatically generated10 for the
XML Schemas. Next, Java source code, which in-
cludes the PER capabilities, was generated from
these ASN.1 Schemas using the OSS Nokalva ASN.1
tools11 and was combined with a newly developed
application, resulting in a new software module.
These software modules accept an XML file (valid
to the particular RSS or DIA-UED XML Schemas)
as input and return the ASN.1-PER encoded ver-
sion and vice versa. Note, there are two independent
ASN.1-PER software modules: one module for the
Usage Environment Description Notification use
case (based on the DIA-UED XML Schemas) and
one module for the RSS feeds (based on the RSS
XML Schema).

8 The ZLIB specification can be found in the RFC 1950 document.
9 More information on the ZIP file format can be found at
http://www.pkware.com/.
10 XML Schema to ASN.1 Schema conversion can be done on the
ASN.1 dedicated website at http://asn1.elibel.tm.fr/
11 OSS Nokalva ASN.1 tools can be found at the Website
http://www.oss.com/.



R. De Sutter et al.

Table 1 Results for use case 1: usage environment description notification — full mode

Full mode Plain text BiM encoded ZIP compressed ASN.1-PER

Byte Parse Byte Parse Encode Byte Parse Encode Byte Parse Encode
size (ms) size (ms) (ms) size (ms) (ms) size (ms) (ms)

Full UED 8,805 2.9 939 276.1 628.2 2,175 5.7 3.8 1,808 9.4 83.1
Small update 8,810 2.8 937 275.3 626.7 2,179 5.6 4.2 1,806 9.4 49.2
Medium update 8,574 2.9 933 275.2 627.2 2,162 8.6 4.3 1,785 9.4 56.9
Large update 13,847 4.2 1,046 279.2 654.3 2,790 7.4 5.0 2,450 13.1 61.2

All four serialization types are used in two modes: a
full mode and an update mode. The full mode is the
classical way of exchanging XML-based information,
namely by transmitting the complete and well-formed
XML file valid to the corresponding XML Schemas. In
practice, for the first use case the updates are applied to
the usage environment description on the client device
and the resulting description is used as input for the seri-
alization type, for the second use case, a valid RSS feed
containing Items published up to the “current day” of
the month. The update mode only transmits the mod-
ifications, in other words, the small, medium, and big
modifications for the first use case and the Items that
were published between two successive days for the sec-
ond use case. Note that only the BiM serialization type
can natively handle updates to previously received XML
information through its Access Units (as discussed in
Sect. 3.1). For all other serialization types, a proprietary
and therefore non-interoperable construction is used to
handle the update information. Indeed, the serializa-
tion-type agnostic XML parser has hard-coded rules to
process these updates. As such, this solution is only for
the BiM serialization-type generic, interoperable, and
applicable for commercial and enterprise applications.
Nevertheless, the update mode for the plain text, ZIP
compressed, and ASN.1-PER serialization types is use-
ful for a comparison.

For each use case, each serialization type and each
mode, we measured the byte size of the data that must
be transmitted, the time required to parse the data, and
if applicable, the time required to prepare the XML
data before transmission. The latter implies using the
BiM encoder for the BiM serialization type, compress-
ing the XML files for the ZIP-compression serialization
type, and executing the ASN.1-PER encoding software
for the ASN.1-PER type. The time required to parse
the data also includes the time required to decompress
the ZIP-compressed XML data and the time required
to decode the PER-encoded data using the ASN.1-PER
decoding software.

We executed ten runs of the tests without exiting
the Java Runtime Environment. The numbers show the
average thereof whereby at most one outlier per test

was discarded. The latter is necessary to minimize the
influence of a run of the Java garbage collector and de-
lay introduced by I/O. The standard deviation of the
remaining numbers indicates that the resulting average
is significant.

All measurements were performed on an Intel
Centrino Pentium M 1.1 Ghz processor running Win-
dows XP Pro SP2 and Java 1.5.0. For the runtime mea-
surements we use the System.nanoTime() method of
Java 1.5.0.

7 Results and discussion

7.1 Results for use case 1: usage environment
description notification

The results for the first use case are shown in Tables 1
and 2. The tables show for each of the four serializa-
tion types the byte size of the data, the time required
to parse this file, and the time required to prepare the
XML data before transmission (also called the encoding
of the data).

In case of the full mode (Table 1), the results clearly
show that the time required to parse BiM-encoded XML
data is about 90 times higher than plain-text XML data
while at the same time the byte size is about 10 times
smaller. ZIP compression doubles the parsing time com-
pared to the plain-text serialization type and achieves a
compression ratio of 4:1. ASN.1-PER needs about triple
execution time for a compression ratio of 5:1.

In case of the update mode (Table 2), the BiM com-
pression efficiency decreases to 6:1, but the parsing time
increases; BiM needs about 250 times longer to parse
the data. Also ZIP compression is less efficient, namely
3:1, and requires four times more time to parse. Con-
trary to the other binary serialization types, ASN.1-PER
improves its compression efficiency, namely from 5:1 for
the full mode to 10:1 for the update mode, without a time
penalty.

The time to encode the XML data for the different
kinds of serialization reveals similar results: BiM is by
far the slowest serialization type, then ASN.1-PER, and
finally ZIP compression.



Comparison of XML serializations: cost benefits versus complexity

Table 2 Results for use case 1: usage environment description notification — update mode

Update mode Plain text BiM encoded ZIP compressed ASN.1-PER

Byte Parse Byte Parse Encode Byte Parse Encode Byte Parse Encode
size (ms) size (ms) (ms) size (ms) (ms) size (ms) (ms)

Full UED 8,805 3.1 939 277.2 631.4 2,175 6.8 4.6 1,808 10.2 83.3
Small update 710 0.6 305 264.5 680.6 524 3.1 2.8 45 1.9 9.4
Medium update 808 0.7 697 266.7 680.3 526 6.2 2.3 55 2.3 7.4
Large update 10,393 3.3 1,110 386.7 1,049.8 2,107 6.9 3.5 1,655 10.8 48.7

Table 3 GPRS price for use
case 1 for the different
serialization types and modes
[GPRS price of a Belgian
telecom operator
(0.5e/100 Kb)]

Byte size GPRS price (e) Cost reduction (%)

Full Plain text 40,036 0.19
Full BiM encoded 3,855 0.01 90.37
Full ZIP compressed 9,306 0.04 76.75
Full ASN.1-PER 7,849 0.03 80.39
Plain-text updates 20,716 0.10 48.25
BiM-encoded updates 3,051 0.01 92.37
ZIP-compressed updates 5,332 0.02 86.68
ASN.1-PER updates 3,563 0.01 91.10

The slow parsing of the BiM-encoded XML data and
the slow BiM encoding of plain-text XML data can be
explained by the usage of the MPEG reference software
for BiM encoding/decoding which is not optimized in
terms of runtime. Commercial implementations of the
MPEG-B standard should provide a more optimized
solution; unfortunately, such implementations were not
available for this evaluation. Also, the XML Schema
for MPEG-21 DIA UED is very complex and compre-
hensive. Analysis of this schema is not straightforward
and introduces a time penalty for parsing and encoding.
Optimized implementations of the standard will prob-
ably provide a caching mechanism for analyzed XML
Schemas. Furthermore, as the MPEG-21 DIA UED
XML Schema is standardized, it is envisaged that appli-
cations or devices will use a hard-coded version thereof
avoiding the analysis of the XML Schema phase. The
ASN.1-PER serialization type avoids this pitfall as the
analysis phase of the XML Schema is performed during
creation of the Java source code. ASN.1-PER requires
over 200 Java classes to model the MPEG-21 DIA UED
XML Schemas, in other words over 200 complex type
XML elements are used in the UED XML Schemas.
The ASN.1-PER tools require about 400 ms to create
these classes.

In Table 3, Figs. 4, and 5, the cumulated byte sizes
for the different serialization types are listed, these are
the total number of bytes that are sent when the three
updates are consecutively applied to the initial usage
environment description. Additionally, Table 3 shows
the costs when sending this amount of data over a GPRS
connection. The cost reduction when using binary-
encoded XML data is the highest when all function-

alities provided by BiM are exploited, in other words,
for BiM-encoded serialization in update mode.

7.2 Results for use case 2: RSS feeds

For the second use case the results are listed in Tables 4
and 5. These tables show for each of the four serializa-
tion types the byte size of the data, the time required to
parse this file, and the time required to encode the XML
data before transmission.

In case of the full mode (Table 4), the results show
that the time required to parse BiM-encoded XML data
is about 20 times slower than plain-text XML data while
at the same time the byte size is about 5 times smaller.
The compression efficiency is lower than for the first use
case because the XML data contains more text values
whereas in the UED test case there is more overhead
by the XML structure. This fact also results in a lower
compression efficiency for the ASN.1-PER serialization
type, namely 1.5:1. Only ZIP compression retains its
compression ratio of 4:1. The parsing and the encoding
of the XML data for the different serialization types are
proportional to the byte size. The parsing of the BiM-
encoded XML data is faster in comparison to the first
use case due to the simple XML Schema for RSS feeds.
Nevertheless, this parsing time remains high compared
to the other serialization types. The ZIP compression
serialization type is, again, the fastest of the three binary
serialization types.

For the values in Table 5 (the update mode) and for
the larger byte size values in Table 4 (the full mode),
the times encoding and parsing the BiM serialization
type is higher than in the first use case. This can be



R. De Sutter et al.

Fig. 4 Cumulated byte sizes
UED notifications—full
mode

Usage Environment Description Notification

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

Full UED Full UED + 
small sized update

Full UED + small +
medium sized update

Full UED + small + medium +
large sized update

type of UED notification

d
at

a 
si

ze
 in

 b
yt

es

Full Plain Text 
Full BiM Encoded
Full ZIP Compressed
Full ASN.1-PER

Fig. 5 Cumulated byte sizes
UED notifications—update
mode

Usage Environment Description Notification

0

5,000

10,000

15,000

20,000

Full UED Full UED +
small sized update

Full UED + small +
medium sized update

Full UED + small + medium +
large sized update

type of UED notification

d
at

a 
si

ze
 in

 b
yt

es

Plain Text Updates 
BiM Encoded Updates
ZIP Compressed Updates
ASN.1-PER Updates

explained as for every new Item in the RSS feed, a
new fragment update unit is created. The parsing and
encoding of multiple fragment update units into one ac-
cess unit delays the processing speed. Once again, we
want to emphasize that we make use of the non-opti-
mized reference software and that a more optimized
implementation of the BiM specification, which handles
multiple fragment update units better, should reduce
the executing time for parsing as well as encoding. The
results also show that the gap of the compression effi-
ciency for the different serialization types is closing. In
fact, ZIP compression outperforms BiM encoding with
respect to parsing and encoding, mainly due to perfor-
mance issues of the BiM reference software, but regard-
ing byte size BiM is superior in all cases with a few
exceptions though. In particular, if many new RSS Items
need to be transmitted, ZIP provides a slightly better
compression ratio than BiM. This indicates that the
overhead for creating a new fragment update unit for

every new Item is large, not only in terms of execution
time, but also in terms of bytes.

The cumulated byte sizes for the different serializa-
tion types are listed in Table 6 and depicted in Figs. 6 and
7. We compare the used bandwidth for this use case after
month with regards to the different serialization types.
We also provide the price when sending this amount of
data over a GPRS connection.

Once again, the cost reduction is the highest for the
BiM-encoded serialization type in update mode. How-
ever, ZIP compression is only slightly worse than BiM
encoding for both the full and update mode, but the lat-
ter mode implies application domain-specific handling
of the data.

8 Conclusions

As XML is nowadays used to store more and more
data, the verbosity of the format is a disadvantage that



Comparison of XML serializations: cost benefits versus complexity

Table 4 Results for use case 2: daily retrieval of an RSS feed — full mode

Full mode Plain text BiM encoded ZIP compressed ASN.1-PER

Byte Parse Byte Parse Encode Byte Parse Encode Byte Parse Encode
Day size (ms) size (ms) (ms) size (ms) (ms) size (ms) (ms)

1 611 0.6 226 65.1 236.8 503 4.7 26.7 280 1.9 21.2
2 1,217 0.8 437 65.7 245.6 762 3.6 27.0 687 2.4 23.4
3 1,748 1.0 522 66.1 248.1 845 4.5 27.7 1,018 3.0 26.2
4 3,207 1.5 895 66.9 261.8 1,224 4.7 29.6 2,015 4.1 31.2
5 4,013 1.8 1,049 67.5 273.0 1,372 7.1 30.6 2,564 4.8 34.5
6 4,013 1.8 1,049 67.9 272.4 1,372 4.7 30.7 2,564 4.8 33.4
7 4,013 1.8 1,049 67.4 272.3 1,372 4.8 31.0 2,564 4.8 35.0
8 5,372 2.2 1,403 68.2 278.6 1,724 6.2 33.1 3,495 6.0 41.5
9 5,372 2.2 1,403 68.1 278.9 1,724 5.3 34.7 3,495 6.0 41.2
10 8,783 3.4 2,120 70.1 296.4 2,403 6.7 37.1 5,905 8.8 54.6
11 9,703 3.7 2,402 70.6 301.3 2,691 7.4 38.0 6,599 9.6 58.8
12 11,417 4.3 2,698 71.7 371.6 2,973 7.7 40.9 7,741 11.0 66.8
13 11,417 4.3 2,698 71.6 372.2 2,973 8.4 41.7 7,741 10.9 65.4
14 11,417 4.3 2,698 71.6 371.8 2,973 7.4 40.8 7,741 10.9 64.8
15 12,398 4.6 2,856 72.9 439.4 3,121 8.1 42.0 8,377 11.8 70.4
16 15,311 5.6 3,306 74.4 894.8 3,514 8.7 45.4 10,281 14.1 79.8
17 17,905 6.5 3,732 75.6 1,042.7 3,938 11.1 50.3 12,157 16.1 90.5
18 25,526 9.1 4,822 90.4 1,040.9 4,916 13.1 58.9 17,092 23.0 120.1
19 27,285 9.8 5,064 97.4 1,277.9 5,137 14.5 61.7 18,249 24.5 127.6
20 27,285 9.7 5,064 97.7 1,277.8 5,137 13.0 61.1 18,249 24.6 126.3
21 27,285 9.7 5,064 96.8 1,276.9 5,137 14.5 61.3 18,249 24.6 126.3
22 29,497 10.5 5,533 98.7 1,291.6 5,615 14.1 64.7 19,776 25.8 134.4
23 30,212 10.8 5,656 98.5 1,295.8 5,744 15.6 65.2 20,263 26.5 137.4
24 30,212 10.7 5,656 99.3 1,298.4 5,744 15.0 64.8 20,263 26.6 138.2
25 30,952 11.0 5,886 99.2 1,305.4 5,977 16.5 66.2 20,831 27.1 138.7
26 31,606 11.2 6,006 99.7 1,304.4 6,078 14.8 67.4 21,286 27.7 138.7
27 31,606 11.2 6,006 99.6 1,304.7 6,078 16.9 66.6 21,286 27.6 137.7
28 31,606 11.2 6,006 99.5 1,306.6 6,078 14.9 66.6 21,286 27.5 137.3
29 33,946 12.0 6,396 100.7 1,315.8 6,457 16.7 69.7 22,971 29.5 145.0
30 39,669 13.9 7,291 103.4 1,746.6 7,303 18.0 77.1 27,075 33.9 165.3

for some Internet-based applications can no longer be
ignored. Creating an alternative (binary) serialization of
the plain-text data can provide a good solution for this
problem.

In this paper, we analyzed two standardized alter-
native XML serialization formats to address the ver-
bosity issue: MPEG-B, the Binary MPEG format for
XML, and ASN.1-PER, the Abstract Syntax Notation
One with Packed Encoding Rules. Overhead reduction
is achieved (1) by a compact representation of the plain-
text XML data and (2) in MPEG-B, by standardizing a
method to update (parts of) an XML tree.

We introduced a new kind of XML parser that is
serialization-type agnostic. As such, applications can
use this parser to handle XML-based data without
being aware of the actual content encoding format.
This parser shields the application developer from any
additional complexity in order to support MPEG-B,
ASN.1-PER, and ZIP compression. On top of that, appli-
cation developers create applications supporting alter-
native serialization formats transparently. Thus, theusage
of this parser enables transparent access to XML-based

(meta)data by shielding users, i.e., application develop-
ers, from its encoding format which is aligned with the
principles of UMA.

We evaluated the usefulness of MPEG-B, ASN.1, and
the developed parser for two real-life applications: a
UMA-enabled application where a client device can in-
form a server about its usage environment and an RSS
application. The MPEG-B BiM serialization and the
ASN.1-PER encoding were compared to a classical plain
text compression technique, namely ZIP compression.
These three binary serialization types and the traditional
plain-text serialization are used in two modes, namely
a full mode that handles complete and valid XML files
and an update mode that only processes the differences.

The results show that BiM encoding of XML data
reduces the required bandwidth and the associated costs
by more than 92% for the first application and nearly
96% for the second application. This is achieved mainly
thanks to the standardized update functionality of
MPEG-B. The ZIP-compression and ASN.1-PER seri-
alization types achieve a cost reduction in the update
mode, which is a proprietary solution for these two



R. De Sutter et al.

Table 5 Results for use case 2: daily retrieval of an RSS feed — update mode

Update mode Plain text BiM encoded ZIP compressed ASN.1-PER

Byte Parse Byte Parse Encode Byte Parse Encode Byte Parse Encode
Day size (ms) size (ms) (ms) size (ms) (ms) size (ms) (ms)

1 611 0.6 226 65.1 236.8 548 4.7 26.7 280 1.9 21.2
2 1,433 0.9 364 66.1 1,862.7 819 3.2 26.7 707 3.5 31.1
3 1,358 0.9 330 66.0 1,864.5 787 3.8 26.5 631 3.5 36.4
4 2,286 1.2 818 119.7 3,287.9 1,061 5.0 27.6 1,297 4.3 39.4
5 1,633 1.0 425 66.5 1,860.4 875 4.4 26.9 849 3.6 30.3
6 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0
8 2,186 1.2 785 120.1 3,281.0 1,044 3.5 27.4 1,231 4.2 33.1
9 0 0 0 0 0 0 0 0 0 0 0

10 4,238 2.0 1,969 282.8 8,087.1 1,485 4.8 31.1 2,710 6.4 46.1
11 1,747 1.0 519 67.3 1,882.8 984 4.2 27.8 994 3.7 37.6
12 2,541 1.3 862 122.2 3,329.1 1,064 3.9 29.0 1,442 4.6 35.2
13 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0
15 1,808 1.0 427 67.5 1,865.0 884 3.8 27.1 936 3.8 31.8
16 3,740 1.7 1,338 178.2 4,926.8 1,211 4.5 29.6 2,204 5.8 41.1
17 3,421 1.6 1,389 178.5 5,012.9 1,314 4.5 29.5 2,176 5.3 40.2
18 8,448 3.3 4,208 681.6 19,220.9 1,809 6.0 35.9 5,235 11.1 64.4
19 2,586 1.3 861 126.3 3,351.8 1,064 4.6 28.4 1,457 4.6 35.7
20 0 0 0 0 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0 0 0 0 0
22 3,039 1.5 1,266 183.3 5,000.2 1,299 4.2 28.2 1,827 5.3 45.4
23 1,542 1.0 405 69.8 1,713.5 860 3.8 26.5 787 3.8 30.1
24 0 0 0 0 0 0 0 0 0 0 0
25 1,567 1.1 469 69.6 1,745.8 925 4.0 26.8 868 3.6 30.5
26 1,481 1.0 396 69.7 1,684.2 848 3.5 27.0 755 3.5 30.2
27 0 0 0 0 0 0 0 0 0 0 0
28 0 0 0 0 0 0 0 0 0 0 0
29 3,167 1.5 1,287 184.8 5,081.7 1,202 4.4 28.5 1,985 5.3 39.7
30 6,550 2.6 3,168 475.2 13,007.9 1,775 5.1 33.2 4,404 8.5 58.1

Table 6 GPRS price for use
case 2 after 1 month

GPRS price of a Belgian tele-
com operator (0.5e/ 100 Kb)

Byte size GPRS price (e) Cost reduction (%)

Full Plain text 524,604 2.56
Full BiM encoded 104,993 0.51 79.99
Full ZIP compressed 110,885 0.54 78.86
Full ASN.1-PER 352,100 1.72 32.88
Plain-text updates 55,382 0.27 89.40
BiM-encoded updates 21,512 0.11 95.90
ZIP-compressed updates 21,858 0.11 95.83
ASN.1-PER updates 32,775 0.16 93.75

serialization types, close to the BiM serialization type.
Nevertheless, MPEG-B BiM has a better compression
ratio; BiM-serialized data can be processed during decod-
ing; and BiM natively supports the update mode. These
characteristics make BiM a good alternative serializa-
tion type with regards to compression efficiency and
usability.

However, the tests also clearly demonstrate the very
slow parsing and encoding of MPEG-B BiM-encoded
XML data. This is partially explained due to the us-

age of the MPEG reference software implementation
of MPEG-B, which is not optimized for speed. It is ex-
pected that (commercial or open source) implementa-
tions will exhibit a significantly better runtime behav-
ior because the MPEG-B BiM specification does not
have any inherent limitation that would prevent this.
Currently, however, there are no such implementations
available. Hence, BiM is currently not a recommended
solution, as long as optimized encoders and decoders
are not available. This is especially true for constrained



Comparison of XML serializations: cost benefits versus complexity

Fig. 6 Cumulative byte size
of daily retrieval of the RSS
feed–full mode

Daily retrieval RSS feed

0

100,000

200,000

300,000

400,000

500,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

day

d
at

a 
si

ze
 in

 b
yt

es

Full Plain Text 
Full BiM Encoded
Full ZIP Compressed
Full ASN.1-PER

Fig. 7 Cumulative byte size
of daily retrieval of the RSS
feed–update mode

Daily retrieval RSS feed

0

10,000

20,000

30,000

40,000

50,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

day

d
at

a 
si

ze
 in

 b
yt

es

Plain Text Updates
BiM Encoded Updates
ZIP Compressed Updates
ASN.1-PER Updates

devices as the additional processing time, and hence
power consumption, nullifies BiM’s advantages with
regard to compression efficiency and native update capa-
bility.

The Abstract Syntax Notation One with Packed
Encoding Rules does not live up to the expectation with
regard to efficiency. Although it is much more efficient
in processing data compared to the MPEG-B BiM tech-
nology, it is slower than ZIP compression and parsing.
On top of that, ASN.1-PER can only handle XML-based
data valid to a pre-determined and fixed XML Schema
as the encoder/decoder software is schema specific, i.e.,
every XML Schema needs its own software module.

Finally, alternative XML serialization formats can
address the verboseness and the non-existing update
capabilities of XML trees. By letting XML parsers han-
dle these additional serialization formats, the complex-
ity of handling XML is not increased for the application
developers. In fact, they do not need to be aware of the

actual content encoding format. End users with mobile
devices may benefit from such alternative serialization
formats by means of paying less for actually sending or
retrieving the same data.

Acknowledgments The research activities that have been
described in this paper were funded by Ghent University, the
Interdisciplinary Institute for Broadband Technology (IBBT), the
Institute for the Promotion of Innovation by Science and Tech-
nology in Flanders (IWT), the Fund for Scientific Research-Flan-
ders (FWO-Flanders), the Belgian Federal Science Policy Office
(BFSPO), and the European Union.

References

1. Barton, J.J., Thatte, S., Nielsen, H.F.: SOAP messages with
attachments. W3C note (2000)

2. Cheney, J.: Compressing XML with multiplexed hierarchical
PPM models. In: Proceeding of IEEE Data Compression Con-
ference, Utah, USA (2001) , pp. 163–172



R. De Sutter et al.

3. Cokus, M., Pericas-Geertsen, S.: XML binary characterization
use cases. W3C working draft (2005)

4. De Sutter, R., De Keukelaere, F., Van de Walle, R.: Evalua-
tion of usage environment description tools. In: Proceedings
of the International Conference on Internet Computing, pp
Las Vegas, USA 66–72 (2004)

5. De Sutter, R., Lerouge, S., Bekaert, J., Rogge, B., Van De Ville,
D., Van de Walle, R.: Dynamic adaptation of multimedia data
for mobile applications. In: Proceedings of the SPIE ITCom
Internet Multimedia Management Systems III, Boston, USA
vol. 4862, pp. 240–248 (2002)

6. De Sutter, R., Timmerer, C., Hellwagner, H., Van de Walle, R.:
Evaluation of models for parsing binary encoded XML-based
metadata. In: Proceedings of the IEEE International Sym-
posium on Intelligent Signal Processing and Communication
Systems, Seoul, Korea pp. 419–424 (2004)

7. Gudgin, M., Mendelsohn, N., Nottingham, M., Ruellan, H.:
XML-binary Optimized Packaging. W3C recommendation
(2005)

8. Heuer, J., Thienot, C., Wollborn, M.:Binary format. Introduc-
tion to MPEG-7: multimedia Content Description Language,
pp. 61–80. Wiley, Newyork (2002)

9. Hunter, J.: An Overview of the MPEG-7 Description Defini-
tion Language (DDL). IEEE Trans Circuits Syst. Video Tech-
nol. 11(6), 765–772 (2001)

10. ISO/IEC: Information technology — MPEG-7 — part 1:
reference software status and workplan. Report no. ISO/IEC
JTC1/SC29/WG11 MPEG/N6973 (2005)

11. ISO/IEC: Information technology MPEG-B part 1: Binary
MPEG Format for XML. Report no. 23001-1:2006 (2006)

12. ITU-T, ISO/IEC: Encoding using XML or basic ASN.1 value
notation. Report no. ITU-T Rec. X.693 (2001), ISO/IEC 8825-
4:2001 (2001)

13. ITU-T, ISO/IEC: Abstract Syntax Notation One (ASN.1)
Specification of Basic Notation. Report no. ITU-T Rec. X.680
(2002), ISO/IEC 8824-1:2002 (2002)

14. ITU-T, ISO/IEC: Specification of Packed Encoding Rules
(PER). Report no. ITU-T Rec. X.691 (2002), ISO/IEC 8825-
2:2002 (2002)

15. ITU-T, ISO/IEC: Mapping W3C XML Schema definitions
into ASN.1. Report no. ITU-T Rec. X.694 (2004), ISO/IEC
8825-5:2004 (2004)

16. Kalden, R., Meirick, T., Meyer, M.: Wireless Internet Access
based on GPRS. IEEE Pers. Commun. 7(2), 8–18 (2000)

17. Karmarkar, A., Gudgin, M., Lafon, Y.: Resource representa-
tion SOAP header block. W3C recommendation (2005)

18. Liefke, H., Suciu, D.: XMill: An efficient compressor for XML
Data. In: Proceedings of the 2000 ACM SIGMOD Interna-
tional Conference on Management of Data, Dallas, USA pp.
153–164. (2000)

19. Niedermeier, U., Heuer, J., Hutter, A., Stechele, W., Kaup,
A.: An MPEG-7 tool for compression and streaming of XML
data. In: Proceedings of the IEEE International Conference
on Multimedia and Expo, Lausanne, Switzerland vol. 1, pp.
521–524. (2002)

20. Perkis, A., Abdeljaoued, Y., Christopoulos, C., Ebrahimi, T.,
Chicharo, J.: Universal multimedia access from wired and
wireless Systems. Circuits Syst. and Signal Proces (Special is-
sue on Multimedia Communications) 20(3-4), 387–402 (2001)

21. Sandoz, P., Pericas-Geertsen, S., Kawaguchi, K., Hadley, M.,
Pelegri-Llopart, E.: Fast Web services. Sun developer network
technical article (2003). http://java.sun.com

22. Sandoz, P., Triglia, A., Pericas-Geertsen, S.: Fast Info-
set. Sun developer network technical article (2004).
http://java.sun.com

23. Timmerer, C., Kofler, I., Liegl, J., Hellwagner, H.: An evalu-
ation of Existing metadata compression and encoding tech-
nologies for MPEG-21 applications. In: Proceedings of the
Seventh IEEE International Symposium on Multimedia
(ISM’05), Irvine, USA pp. 534–539 (2005)

24. Vetro, A., Christopoulos, C., Ebrahimi, T.: Universal multi-
media access. IEEE Signal Process (Special issue) 20(2), 16
(2003). Guest editors

25. Vetro, A., Timmerer, C.: Overview of the digital item adap-
tation standard. IEEE Trans Multimed (Special Issue on
MPEG-21) 7(3), 435–445 (2005)

26. Williams, S.D., Haggar, P.: XML binary characterization mea-
surement Methodologies. W3C working draft (2005)

27. Ziv, J., Lempel, A.: Compression of individual sequences via
variable rate coding. IEEE Trans Inf Theory 24(5), 530–535
(1978)

28. Ziv, J., Lempel, A.: A Universal Algorithm for Sequential
Data Compression. IEEE Trans Inf Theory 23(3), 337–343
(1978)

Authors’ biographies

R. De Sutter received master degree in computer science from
Ghent University, Belgium, in 1999. He joined the Multimedia
Lab in 2001 where he is currently working toward Ph.D. degree.
His research interests include video coding technologies, usage
context modeling and negotiation, and content adaptation.

S. Lerouge received his master degree in computer science from
Ghent University, Belgium, in 2001. Since then, he started working
towards Ph. D. degree in the Multimedia Lab, which he obtained
in 2005. His research focuses on applications that use scalable
video coding, in particular the maximization of the visual quality
in constrained environments.

P. De Neve was born in Ghent, Belgium, in 1970. He received
his M.Sc. and Ph.D. degrees in Engineering from the Ghent Uni-
versity, Belgium, in 1995 and 2000, respectively. He is working as
an assistant professor at the Multimedia Lab. His major research
interests include color image processing, video coding, coding and
description of multimedia data.

C. Timmerer received the Dipl.-Ing. degree in Applied Informat-
ics at University of Klagenfurt, Department of Information Tech-
nology (ITEC). He joined the University of Klagenfurt in 1999
and is currently a University Assistant and chairs the IT admin-
istration group of the Department of Information Technology.
His research interests include coding-format agnostic resource
adaptation, transport of multimedia content, multimedia adapta-
tion in constrained and streaming environments, and distributed
multimedia adaptation.

H. Hellwagner received his Dipl.-Ing. degree (in Informatics) and
Ph.D. degree (Dr. techn.) in 1983 and 1988, respectively, both from
the University Linz, Austria. From 1989 to 1994, he was senior
researcher and team/project manager at Siemens AG, Corporate
R&D, Munich, Germany. From 1995 to 1998, he was associate pro-
fessor of parallel computer architecture at Technische Universität
München (TUM). Since late 1998, he has been a full professor of
computer science at the Department of Information Technology
(ITEC) at the University Klagenfurt, Austria. His current research
areas are distributed multimedia systems, multimedia communi-
cations, and Internet QoS.



Comparison of XML serializations: cost benefits versus complexity

R. Van de Walle received his M.Sc. and Ph.D. degrees in Engineer-
ing from Ghent University, Belgium, in 1994 and 1998, respec-
tively. After a visiting scholarship at the University of Arizona
(Tucson, USA), he returned to Ghent University, where he be-
came full professor of multimedia systems and applications, and

head of the Multimedia Lab. His current research interests include
multimedia content delivery, presentation and archiving, coding
and description of multimedia data, content adaptation, and inter-
active (mobile) multimedia applications.


